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Abstract. We present an analysis of the T1u⊗hg Jahn–Teller (JT) system in which both possible
h-type quadratic terms are considered. It is well known that this results in pentagonal (D5d)
or trigonal (D3d) minima on the potential energy surface, depending on the magnitudes of the
coupling constants. Although the positions of the minima with quadratic couplings are known,
the anisotropic effects which occur due to the lifting of the degeneracy of the h-vibrations by
the quadratic coupling have not been studied before. Such effects have previously been found
to be important in cubic systems. We investigate the nature of the minima by evaluating the
curvature of the potential energy surface, and hence we determine the frequencies of the local
vibrational modes in the strong-coupling limit as a function of the quadratic coupling strengths
for the first time. We find that, in the linear coupling limit, the frequency of one of the e-modes
at the minima tends to zero. This is as expected because, in this limit, the minimum-energy
surface is a trough joining the D3d and D5d points.

A scale transformation method is then used, which allows the anisotropy effect to be
incorporated into the states associated with the D5d wells. States having the required icosahedral
symmetry of the system as a whole are then written down in terms of the anisotropic states.
Specific results will be given for the dependence of the inversion splitting on the anisotropy. The
new states are of significance because they are necessary for the calculation of further properties
of these systems, such as reduction factors. The system is also a possible model for the ground
state of the C−60 anion.

1. Introduction

Prior to the discovery of C60, very little theoretical work had been done on JT effects in
icosahedral (Ih) symmetry (the two notable exceptions being those of Khlopinet al [1]
and Pooler [2]). The high symmetry of icosahedral systems opens many new exciting
possibilities from a theoretical point of view, as the electronic and vibrational systems
have threefold, fourfold and fivefold degeneracies (which can be labelled by the irreducible
representations (IRs) T, G and H respectively of the Ih group). Orbital degeneracies above
threefold are rare in other systems. The possible JT effects include the coupling of an
orbital triplet to the fivefold degenerate vibrational modes (namely the T⊗ h problem), the
coupling of the fourfold degenerate orbital level to the fourfold and/or fivefold degenerate
vibrations (i.e. G⊗ (g+ h) etc) and the coupling of a fivefold orbitally degenerate level to
the fourfold and/or fivefold vibrational modes (H⊗ (g+ h) etc).

Molecular orbital calculations for C60 indicate that the unfilled orbital of lowest energy
is of T1u symmetry. Thus on doping the molecule with an impurity, one or more electrons
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will occupy this T1u orbital. The symmetries of the possible JT effects must occur in the
direct product T1 ⊗ T1 = A1 ⊕ T1 ⊕ H. The A1 term is ignored as usual and the T1 term
is excluded because it changes sign under time reversal. Thus the ground state of the C−

60
anion is expected to exhibit a T1u⊗ hg JT effect. It is this system which has received most
attention in the literature.

A number of papers have been published which consider the linearly coupled T1u⊗ hg

JT system, in which the potential energy surface contains a trough of SO(3) symmetry.
Auerbachet al [3] studied the problem starting from a weak-coupling basis. O’Brien [4],
starting from a strong-coupling regime, used a parametrization of the five components of the
hg mode applicable to the higher SO(3) symmetry in order to simplify the problem. She was
then able to obtain analytical and numerical results which cover all coupling strengths. The
non-linear (i.e. warped) T1u⊗ hg JT system has been studied in less detail. Ceulemans and
Vanquickenborne [5] describe the effect of warping using spherical harmonic functions, and
plot the warping potential in electronic space. O’Brien [4] also discusses how the energies
obtained in the linear picture reduce to the icosahedral results when warping is imposed.
When warping is included, there are found to be minima located at pentagonal (D5d) and
trigonal (D3d) positions inQ-space, with saddle points of D2h symmetry in between. If
the warping effect is large, it is necessary to consider the wavefunctions in terms of linear
combinations of states localized in the D5d or D3d minima in the potential energy surface,
and not as perturbations on SO(3) states. Dunn and Bates [6] discussed JT effects in
T1u⊗hg using such a model with two quadratic terms included in the vibronic Hamiltonian.
A general form for the ground states was also given by Wanget al [7]. Both methods give
results consistent with the predictions of O’Brien [4].

In linear coupling, the T⊗ h system can be compared in some respects to that of the
special case of the linear T⊗ (e+ t2) JT system which occurs in cubic symmetry when the
e- and t2-modes have equal JT energies. Both cases are described by mathematically similar
Hamiltonians, and in both cases the points of lowest energy on the potential energy surface
form a two-dimensional trough. Also, if higher-order coupling terms are included in the
vibronic Hamiltonians then the trough warps in both cases, giving distinct minima located at
lower symmetry positions. However, although similar techniques can be used to study both
systems, the positions of the wells and the detailed mathematics necessary to describe them
are different in each case due to the differing point group symmetries. In addition, whereas
in the cubic T⊗ (e+ t2) JT system unequal coupling can be considered to be a warping
mechanism, there is no analogue to this for T1u⊗ hg. Therefore the sign and magnitude of
the second-order coupling constants are especially important in determining the properties
of the minima in the quadratic T1u⊗ hg JT system. A full discussion of the comparisons
between the two systems with warping was given by Ceulemans and Vanquickenborne [5].

At the minima, the degeneracy of the vibrational frequency of the hg modes will be
lifted. Local modes of lower symmetries will exist, which have their own vibrational
frequencies and so introduce anisotropy into the system. However, in previous publications
on T1u⊗hg JT systems, this anisotropy has been ignored. The deviations of the anisotropic
frequencies from the isotropic ones increase as the strengths of the quadratic couplings (and
hence of the warping) increase. It is not known whether the effect will be significant for
fullerene systems, as the magnitude of the deviation from SO(3) symmetry is expected to
be small [4, 3]. However, it is important to calculate the magnitude of the anisotropy effect
to determine whether its omission is reasonable, as well as from a theoretical point of view.
Indeed, anisotropy is known to have significant effects in cubic systems ([8] and references
therein). The changes in frequency of the local modes will alter the vibrational contributions
to the vibronic states, which in turn will affect other important results such as the reduction
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factors [9–11].
The approach of Dunn and Bates [6] will be developed further in this paper by

incorporating anisotropy effects into the T1u ⊗ hg JT problem. We will examine how
different values (sign and size) of the quadratic coupling constants and the local vibrational
frequencies affect the nature of the minima, the associated vibronic states and their energies.
We begin by presenting second-order perturbation calculations to determine the local
vibrational frequencies in the strong-coupling lines using the method ofÖpik and Pryce
[12]. In so doing, we examine the shape of the minima and give the ranges of the
quadratic coupling constants for which the wells are absolute minima. Vibronic states
associated with the potential wells were obtained previously for the isotropic frequency
case using a unitary shift transformation and energy minimization technique [6]. A scale
transformation procedure will then be employed in addition to this shift transformation in
order to incorporate the anisotropic frequencies into the states for the D5d wells. Results for
the D3d minima are not given at this stage due to the additional complication of a repeated
IR in the reduction of the frequencies to local modes.

As in the previous approach neglecting anisotropy, linear combinations of the states
associated with the D5d wells having the required icosahedral symmetry will then be taken
using projection operator techniques. This is effectively allowing tunnelling between the
wells to occur, and so automatically turns a static picture into one which is dynamic in
character. Inversion (or tunnelling) splittings between the vibronic states will then be
calculated and compared with the isotropic case. Results will be presented for the inversion
splitting due to the tunnelling of the JT system between equivalent D5d minima.

2. The vibronic Hamiltonian and local minima

As h⊗h= a⊕ t1⊕ t2⊕2g⊕2h, the relevant quadratic terms for the T1u⊗hg JT systems are
composed of two terms of repeating h-symmetry. The vibronic HamiltonianH including
quadratic terms has been given in [6]. Here, we rewriteH in the modified form

H = 1

2

∑
j

[
P 2
j

µ
+ µω2Q2

j

]
I + V1

∑
j

QjCj + V2

∑
j

{Qh ⊗Qh}jCj

+V3

∑
j

{Qh ⊗Qh}′jCj (2.1)

where V1 is the linear coupling coefficient andV2 and V3 are the two independent
quadratic coupling coefficients for the two h-terms (denoted here as unprimed and primed
contributions). The sumj is taken over the five components of the hg-mode (θ , ε, 4, 5 and
6) andI is the three-dimensional unit matrix. TheCj are Clebsch–Gordan (CG) matrices,
which may be expressed in the form

Cθ = 1

2

√
3

5

[
φ−1 0 0

0 −φ 0
0 0 1

]
Cε = 1

2

√
1

5

[
φ2 0 0
0 −φ2 0
0 0 −√5

]

C4 =
√

3

10

[ 0 0 0
0 0 1
0 1 0

]
C5 =

√
3

10

[ 0 0 1
0 0 0
1 0 0

]
C6 =

√
3

10

[ 0 1 0
1 0 0
0 0 0

]
(2.2)

with respect to electronic basis statesx, y andz, whereφ = 1
2(1+

√
5) is the golden mean.

A general definition for quadratic terms is

{Q01 ⊗Q02}i0γ =
∑
γ1γ2

Q01γ1Q02γ2〈01γ102γ2 | 0γ 〉i (2.3)
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where the〈01γ102γ2 | 0γ 〉i are CG coefficients, which can be looked up from tables [13].
i is a multiplicity label added to distinguish between the different0 in 01 ⊗ 02. For our
case, the contributions to the two types of quadratic term of repeating h-symmetries are thus
found to be∑
j

{Qh ⊗Qh}jCj =
[√

1

2
QθQε +

√
3

8
(Q2

4−Q2
5)

]
Cθ

+
√

1

8
(Q2

θ −Q2
ε +Q2

4+Q2
5− 2Q2

6)Cε +
√

1

2
Q4(
√

3Qθ +Qε)C4

+
√

1

2
Q5(−

√
3Qθ +Qε)C5−

√
2QεQ6C6 (2.4)

and∑
j

{Qh ⊗Qh}′jCj =
[√

3

8
(Q2

θ −Q2
ε)−

√
1

24
(Q2

4+Q2
5− 2Q2

6)

]
Cθ

−
[√

3

2
QθQε−

√
1

8
(Q2

4−Q2
5)

]
Cε−

√
1

6
[Q4(Qθ −

√
3Qε)+ 2

√
2Q5Q6]C4

−
√

1

6
[Q5(Qθ +

√
3Qε)+ 2

√
2Q4Q6]C5+

√
2

3
[QθQ6−

√
2Q4Q5]C6.

(2.5)

The quadratic terms in the vibronic Hamiltonian warp the potential energy surface,
which would be a two-dimensional trough in the linear coupling case, giving extrema of
pentagonal (D5d) and trigonal (D3d) symmetry [4, 14]. The splitting of the T1u orbital at
each of these extrema can be predicted easily using group theory. The decomposition of
the IR T1u of the icosahedral group to the lower point groups can be obtained from group
character tables. Thus we find T1u → A2u+ E1u for the D5d group and T1u → A2u+ Eu

for the D3d group. The A2u states have the lowest energy in both cases. We note that
combinations of these lowest-energy states must be taken to produce ground states having
the correct symmetry for the system as a whole (which is physically equivalent to allowing
tunnelling between the minima).

The coordinatesQ(k)
j for the D5d and D3d extrema were obtained in [6]. The electronic

states associated with them, together with their energies, were also obtained by substituting
the values of the extrema positionsQ(k)

j into the potential energy matrixU (which can be
obtained by simply ignoring the kinetic energy term inH) and diagonalizing it. The six
equivalent ground states for the minima of D5d symmetry (each of symmetry A2u) were
labelled A–F, and the ten ground states for the D3d minima were labelled a–j. The results
obtained for the wells A and a are summarized in table 1. The energies of the Eu-states
have also been given. The results have been defined in terms of the parameters

β =
√

6

(5− 4
√

2V ′2)
and γ =

√
2

(
√

15− 4
√

2/3V ′3)
(2.6)

whereV ′i = Vi/µω2 (i = 2, 3) and

K1 = −
√

h̄

2µω
V1. (2.7)

The remaining states (and their energies) can be obtained by reference to tables I and II
of [6].
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Table 1. The coordinatesQ(k)
j for one of the extrema points, the ground and excited states in

the extremum together with the corresponding energies. In the table, the parametersβ ′ andγ ′
are given byβ ′ = βV1/µω

2 andγ ′ = γV1/µω
2.

Symmetry Coordinates
group LabelQ(k)

θ , Q(k)
ε , Q(k)

4 , Q(k)
5 , Q(k)

6 Electronic states Energy

D5d A β ′/
√

2, β ′/
√

6,−β ′, 0, 0 |A2u〉 = (
√

5φ)−1/2|φy + z〉 E
(I)
A2u
= −

√
2
3β

K2
1

h̄ω

|E1uθ〉 = |x〉 E(I )1u = 2
3(5−

√
2V ′2)β

2K
2
1

h̄ω

|E1uε〉 = (
√

5φ)−1/2|y − φz〉

D3d a −γ ′/√2,
√

3γ ′/
√

2,−γ ′, 0, 0, |A2u〉 = 3−1/2|φ−1y + φz〉 E(D)A2u
= −

√
6
5γ

K2
1

h̄ω

|Euθ〉 = |x〉 E(D)Eu
= 2

5(15−√10V ′3)γ
2K

2
1

h̄ω

|Euε〉 = 3−1/2| − φy + φ−1z〉

Using the expressions for the energies of the wells given in table 1, we can find the
values of the quadratic coupling constants for which each type of extremum becomes an
absolute minimum. One restriction follows immediately from the requirement that the JT
system should remain stable. The other restriction is found by comparing the energies of
the pentagonal and trigonal wells [6]. Thus we find that

3√
5
V ′2 > V ′3 > −

3

8

√
10 and V ′2 <

5

8

√
2 (2.8)

for the pentagonal wells to be absolute minima. For trigonal extrema to be absolute minima,
we find

√
5

3
V ′3 > V ′2 > −

5

8

√
2 and V ′3 <

3

8

√
10. (2.9)

Along the line
√

5V ′3 = 3V ′2, the pentagonal and trigonal points coexist, and together with
the dihedral (D2h) points form a two-dimensional trough. Figure 1 shows the ranges of
values for the scaled quadratic coupling coefficientsV ′2 and V ′3 for which D3d and D5d

minima exist. Ceulemans [14] has pointed out that a tensor of tenth order (including also
the twofold orbital part) is needed for the D2h extrema to become absolute minima. This
means that quartic coupling terms h⊗ h⊗ h⊗ h would need to be included in the vibronic
Hamiltonian. This will not be considered further in this paper.

3. Local vibrational frequencies

An important property of the T1u⊗ hg system with quadratic coupling is the frequencies
of the oscillators located in the minima. Symmetry analysis shows that, at the pentagonal
extrema, the vibrational modes of hg-symmetry will be reduced to a1g + e1g + e2g, while
at the trigonal extrema they will be reduced to a1g+ 2eg. Thus the fivefold degeneracy of
the hg modes is lifted in both cases. The values of the frequencies may be derived using
the method ofÖpik and Pryce [12]. This involves expanding the potential energyU as a
power series about the minimum at the pointQ

(k)
j to give

U(q) = U(Q(k))+ U1(q)+ U2(q) (3.1)
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Figure 1. The domains of existence of the absolute minima of D5d, D3d and D2h symmetries.

with

U1(q) =
∑
0γ

(
∂U

∂Q0γ

)
Q(k)

q0γ U2(q) = 1

2

∑
01γ1

∑
02γ2

(
∂2U

∂Q01γ1∂Q02γ2

)
Q(k)

q01γ1q02γ2

(3.2)

whereq0γ = Q0γ −Q(k)
0γ are the nuclear displacements from the extrema.

The eigenstates and energies of the matrixU(Q(k)) are known from the determination
of the minima, andU1(q) andU2(q) treated as perturbations. Thus the eigenvalues ofU(q)

up to second order are

E(q) = E0(Q
(k))+ A†0U2A0+

∑
i 6=0

|A†i U1A0|2
E0(Q(k))− Ei(Q(k))

(3.3)

where theAi andEi(Q(k)) are the eigenvectors and eigenvalues respectively of the matrix
U(Q(k)) and the sumi is taken over the excited orbital states. The term linear inq0γ is
absent since, at the pointQ(k), the function is at an extremum. Thus the expression (3.3) is
a bilinear form of the displacementsq0γ . It can therefore be expressed in the matrix form

E(q) = E0(Q
(k))+ 1

2(q01γ1q01γ2 . . .)M


q01γ1

q01γ2

·
·
·

 (3.4)

where

M =


∂2E(q)

∂q2
01γ1

∂2E(q)

∂q01γ1∂q01γ2
· · ·

∂2E(q)

∂q01γ2∂q01γ1

∂2E(q)

∂q2
01γ2

· · ·
· · · · · · · · ·

 . (3.5)
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The new vibrational frequenciesω0 in the neighbourhood of the extrema can be obtained
by diagonalizing the matrixM. Table 2 gives the resultant calculated frequenciesω0 of
the local normal modes for both the pentagonal and trigonal wells in terms ofλ2

0, where
λ0 = ω0/ω. λ1 andλ2 are the roots of the quadratic equationaλ2+ bλ+ c = 0, where

a = −15+ 2
√

10V ′3
b = 135− 90

√
2V ′2 − 54V ′22 + 48

√
10V ′3 − 118V ′23 + 60

√
5V ′2V

′
3

c = 3
√

2

5
(−675− 540

√
2V ′2 − 90V ′22 + 90

√
10V ′3 + 50V ′23 + 144

√
5V ′2V

′
3)(
√

5V ′3 − 3V ′2).

(3.6)

It is interesting to note that, for both types of extremum, the frequencies of the a1g-modes
are only dependent upon one of the quadratic coupling coefficients (that is, onV ′2 at the
D5d extrema and onV ′3 at the D3d extrema) but that the E-type frequencies depend on
both V ′2 and V ′3. Also, it is a simple matter to show analytically that the values of the
frequencies given in table 2 are all positive within the regions of quadratic coupling for
which the corresponding extrema are minima, as would be expected. We can also determine
the maximum values of the frequencies allowed for the extrema to remain minima. For
example, we haveλa1g < 1.4, λe1g < 1.3 andλe2g < 1.4 for the D5d extrema to be absolute
minima.

Table 2. The local frequencies in the D5d and D3d minima.

Symmetry Local vibrational frequency parameter
group 0 λ2

0 (= ω2
0/ω

2)

D5d a1g 1− 4
5

√
2V ′2

e1g
1
5
(3V ′2−

√
5V ′3)(15

√
2−18V ′2+2

√
5V ′3)

5−2
√

2V ′2

e2g 1+
√

2
5 V
′
2 +

√
2
5V
′
3

D3d a1g 1− 4
15

√
10V ′3

eg λ1/9

e′g λ2/9

It can be seen that whenV ′2 = V ′3 = 0, λa1g = λe2g = 1 for the D5d minima, and
λa1g = λeg = 1 for D3d, but that λe1g (for D5d) and eg (for D3d) tend to zero. This
correctly represents the case in which the minimum potential energy surface consists of a
two-dimensional trough, rather than distinct wells. It was necessary to take the calculations
to second order in perturbation theory in order to obtain this result: to first order, all theλ

tend to unity, which is equivalent to assuming there are isotropic wells.

4. The scale transformation for pentagonal wells

In our previous work for the isotropic case [6], the states in the wells were obtained initially
by applying a unitary shift transformationU to displace the origins of coordinates. This will
be calledUd here. The parameters inUd were then determined by minimizing the energy
of the predicted states. States in undisplaced coordinates were then obtained by multiplying
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the states in each wellk by the operatorU(k)
d , given by

U
(k)
d = exp

{
− i

h̄

∑
j

Q
(k)
j Pj

}
. (4.1)

This is equivalent toUd after substitution of the values ofQj appropriate for wellk. Linear
combinations of such states are later required in order to construct vibronic states of the
system as a whole which have the required icosahedral symmetry. However, this method
only incorporates the positions of the wells, and does not take into account the shapes of the
minima. As shown above, when quadratic coupling is included, the wells are anisotropic,
so this is an important omission. The anisotropy effect in the strong-coupling limit has been
included in the states for cubic systems by treating the collective displacementsQi at the
minima as dynamic variables (see the discussion in [15] and references therein). However,
the approach is not correct for finite couplings. Also, it is not an operator approach, so
cannot be used in conjunction with the unitary transformation method. Hence the many
advantages of this method are lost.

Very recently, a new procedure was used in order to incorporate anisotropy into the
cubic T⊗ t JT system [8]. A scale transformationUs was applied to the Hamiltonian
in addition toUd . The shift transformation determines the positions of the minima, and
the scale transformation determines the shape of the minima. The shift transformation
parametersα were determined by minimizing the energy as before, and the parametersλ in
the scale transformation were determined by minimization of the energy to second order in
perturbation theory. The effect of this is to incorporate anisotropy formally into the theory
without the need of any prior knowledge of its effects. It was also shown to produce results
consistent with those of thëOpik–Pryce method [12] in the strong-coupling limit.

Unfortunately, the scale transformation procedure as applied to T⊗ t cannot be applied
directly to the problem under consideration here due to the added complication that the
wells are necessarily generated by the quadratic coupling. Also it cannot be applied to
cases containing repeated IRs in the reduction of the frequencies at the minima, as occurs
for the D3d minima (as the required matrices are not known). However, a modified procedure
can be adopted to obtain strong-coupling results for the pentagonal (D5d) extrema. Rather
than fixing values for the scale transformation parametersλ by energy minimization, the
λ can be replaced by the frequencies obtained using theÖpik–Pryce procedure. The scale
transformation can then be applied directly to the states as in the T⊗t case. Thus, proceeding
with the pentagonal (D5d) wells, we define a scale transformation for wellk to be

U(k)
s = exp

{
i

h̄

∑
ij

A
(k)
ij (QiPj + PjQi)

}
(4.2)

where the matrix elementsA(k)ij are defined by the matrix

A(k) = 1
4S
†
k


ln λa1g 0 0 0 0

0 lnλe1g 0 0 0
0 0 lnλe1g 0 0
0 0 0 lnλe2g 0
0 0 0 0 lnλe2g

 Sk. (4.3)

Sk is an as yet unknown unitary matrix which reduces the hg modes of the Ih group to local
modes of a1g, e1g and e2g symmetries of the D5d group for wellk. It can be proved easily
that the effect of the scale transformation on the ground vibrational states is to alter the hg-
mode frequencyω to a local mode frequencyω0 = λ0ω (as given in table 2). In principle,
it would be possible to obtain theSk by diagonalizing the matrixM in (3.5). However,
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the inclusion of the quadratic terms in the vibronic Hamiltonian makes this process very
difficult to execute. Therefore, we turn to symmetry considerations to simplify the problem.

When the fivefold degeneracy of the hg-modes is lifted by the quadratic terms, hg is
reducible. ThereforeSk must be a unitary matrix which reduces reducible matrices into
irreducible matrices belonging to the D5d subgroup of Ih. This may be carried out by the
traditional method of projection operator techniques but a simple alternative is to use the
so-called eigenfunction method [16]. Details of this method are given in the appendix
together with the results for the six matricesSk for the D5d minima.

The effect of the scale transformation is that the unitary transformation used to multiply
the wells in [6] is replaced by the product operatorUk = U(k)

d U(k)
s . The states in the wells

are thus written in the form

|ψk〉 = Uk|φk; 0〉 = U(k)
d U(k)

s |φk; 0〉 ≡ |φ′k; 0〉. (4.4)

The new overlap integral between the ground state vibrational wavefunctions localized in
any two wellsj andk becomes

SI = 〈0|U †j Uk|0〉=
{

λe1gλe2gν

[3λa1g + λe1g + λe2g][2λe1g + (3+
√

5)λe2g][(3+
√

5)λe1g + 2λe2g]

}1/2

×10
√

5φ exp

{
−5
√

6νβ

(
EJT

h̄ω

)}
(4.5)

where

ν = λa1gλe1gλe2g

λa1g(λe1g + λe2g)+ 3λe1gλe2g

(4.6)

and whereEJT = −E(I)a2u
(table 1) is the magnitude of the JT energy for pentagonal wells.

In the limit whenλa1g = λe1g = λe2g = 1, it can be seen thatUs = 1. In this case,
the unitary transformationUk reduces to the shift transformation used previously, andSI
becomes

SI = exp{−√6βEJT /h̄ω} (4.7)

as obtained in [6]. It is interesting to note that in the isotropic limitV ′2 = V ′3 = 0 (and hence
λa1g = λe2g = 1 andλe1g = 0), SI = 0. This is because there are no longer distinct wells,
but a trough. The original method, involving a unitary shift transformation only, does not
reproduce the correct isotropic limit as the method intrinsically assumes the existence of
wells.

5. The inversion splitting

The vibrational states localized in the D5d or D3d wells are good eigenstates of the system in
the infinite-coupling limit. However, for finite coupling, the barrier height between the wells
is not infinite and the system is able to tunnel from one well to another. The degeneracy of
the states in the infinite-coupling limit will be partially or completely lifted by this tunnelling
and the vibronic states will have full icosahedral symmetry. The vibronic states associated
with the D5d wells have T1u and T2u symmetries. They may be obtained using projection
operators as described in [6] for the isotropic case. Consequently, the states are written in
the same form as in [6] but taking the new definitions of the|ψk〉 from (4.4). Thus the
x-components of the states are written as

|TI1ux〉 = NI
T1u

[φ−1(|C ′; 0〉 + |D′; 0〉)+ |E′; 0〉 − |F ′; 0〉]
|TI2ux〉 = NI

T2u
[|C ′; 0〉 + |D′; 0〉 − φ−1(|E′; 0〉 − |F ′; 0〉)] (5.1)
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with normalization factors

NI
T1u
= [10(1+ SI )]−1/2 NI

T2u
= [10(1− SI )]−1/2. (5.2)

The y- andz-components can be found in [6].
The inversion splittingδ between the first excited vibronic state|TI2ui〉 and the ground

vibronic state|TI1ui〉 is given by

δ = 〈TI2ui |H|TI2ui〉 − 〈TI1ui |H|TI1ui〉 =
2(SIH11+

√
5H12)

1− S2
I

(5.3)

whereH11 = 〈ψk|H|ψk〉 andH12 = 〈ψA|H|ψB〉, for example. (The matrix element between
any two different wells is±H12.) SI is the phonon overlap given by (4.5). We note that
the definitions ofH11 andH12 used here are different to those given in [6], where the states
ψk were not normalized and orbital overlap factors of

√
5φ and−φ were not included in

the definitions ofH11 andH12 respectively.
After evaluation of the new matrix elements, we find that

H11 = −EJT + 1

4
h̄ω

[
λa1g + 2λe1g + 2λe2g +

1

λa1g

(
1− 4

5

√
2V ′2

)
+ 2

λe1g

[
1+ 1

5

(√
2V ′2 −

√
10V ′3

)]
+ 2

λe2g

[
1+ 1

5
(
√

2V ′2 +
√

10V ′3)
]]

(5.4)

and

H12 = − SI√
5

[
− 5√

6
λ2

a1g
βEJT + 1

2
h̄ω(λa1g + 2λe1g + 2λe2g)

−EJT [f1(λ)V
′

2 + f2(λ)V
′

3 + f3(λ)]

−h̄ω[f4(λ)V
′

2 + f5(λ)V
′

3 + f6(λ)]

]
(5.5)

where

f1(λ) = − 5√
3

λ2
a1g
β

g1(λ)2
(λe2g − λe1g(2−

√
6))(λe2g − λe1g(2+

√
6))

f2(λ) =
√

5

3

λ2
a1g
β

g1(λ)2
(3λe2g + λe1g(2+

√
10))(3λe2g + λe1g(2−

√
10))

f3(λ) = −
5βλ2

a1g√
6g1(λ)2

[(λe1g + λe2g)
2+ (3+ λ2

a1g
)(λ2

e1g
+ λ2

e2g
)− 6λ2

e1g
λ2

e2g

+2λa1gλe1gλe2g(λa1g + 3λe1g + 3λe2g)] +
2

g1(λ)
λa1g(λe1g + 4λe2g)

f4(λ) =
√

2

4g1(λ)
(−λa1g + 2λe1g − λe2g)

+
√

2

g2(λ)
[λ2

e1g
+ 2λe2g(5λe1g + 2λe2g)− 3λa1g(4λe1g + λe2g)]

f5(λ) = − 3
√

10

20g1(λ)
(λa1g + 2λe1g − 3λe2g)−

√
10

g2(λ)
[λ2

e1g
+ λe2g(2λe1g − 3λa1g)]

f6(λ) = 1

4g1(λ)
[λa1g(λ

2
e1g
+ λ2

e2g
− 2)+ (λe1g + λe2g)(λ

2
a1g
+ 3λe1gλe2g − 4)]
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+ 1

g2(λ)
{3λ2

a1g
(λ2

e1g
+ λ2

e2g
+ 3λe1gλe2g)

+3λa1g[2λ
3
e1g
+ λe1g(3λ

2
e2g
− 5)+ λe2g(3λ

2
e1g
+ 2λ2

e2g
− 5)]

+λ3
e1g
(3λe1g + 8λe2g)+ 2λ2

e1g
(4λ2

e2g
− 5)+ λe1gλe2g(8λ

2
e2g
− 25)

+λ2
e2g
(3λ2

e2g
− 10)} (5.6)

and where

g1(λ) = λa1g(λe1g + λe2g)+ 3λe1gλe2g

g2(λ) = (3λa1g + λe1g + λe2g)(2λe2g + (3−
√

5)λe1g)(2λe2g + (3+
√

5)λe1g).

(5.7)

The value ofH11 is equivalent to that obtained in [6] when all of theλ = 1 (noting that
the definitions of theirKi (i = 2, 3) should be multiplied by (K1/h̄ω)

2).
The inversion splitting can thus be expressed as

δ = 2SI
1− S2

I

{
EJT [f1(λ)V

′
2 + f2(λ)V

′
3 + f3(λ)]

+h̄ω
[

1

4λe1g

(5− λ2
a1g
− 2λ2

e1g
− 2λ2

e2g
)+ f4(λ)V

′
2 + f5(λ)V

′
3 + f6(λ)

]}
.

(5.8)

It can be seen thatδ depends on the JT energy, ¯hω and the quadratic coupling constants
V ′2 andV ′3. The term involvingh̄ω arises from the complicated nature of the states in the
wells from second-order perturbation theory. However, the contribution of this term toδ

is small, especially in strong coupling. Also, we note thatδ is positive, showing that the
ground vibronic state has the same transformation properties as the original electronic term
from which it was derived.

In figure 2, we compare the calculated values ofδ as a function ofK1/h̄ω using the
results for the unitary shift transformation alone (as in [6]) and those obtained here using the
anisotropic states. Results have been presented forV ′2 = V ′3 = 0.01K1/h̄ω. These values
are chosen as they ensures these extrema are indeed wells, and also keep the quadratic
couplings much less than the linear coupling. It can be seen that the anisotropy strongly
influences the magnitude of the tunnelling splitting, even in the strong-coupling region, with
the inversion splitting always being significantly larger than the result obtained neglecting
anisotropy. It can be seen thatδ does not tend to unity in weak coupling (as in the isotropic
case) because the quadratic coupling also tends to zero in this limit, so that the system is
in the region with a trough of minimum energy. Hence the inversion level should be a
rotational quantum for a two-dimensional trough inQ-space above the ground state, and
not a vibrational quantum as in the isotropic results.

It is interesting to study the dependence ofδ on the JT energy and on the barrier height
hB as a function of the distancedM between any two of the D5d minima inQ-space. The
barrier heighthB can be defined as the difference between the energy of theD2h saddle
points and the D5d minima. Using the results given in table 1 and the expression (3.9) in
[6], we obtain

hB = 3
√

5

40

(3V ′2 −
√

5V ′3)(3
√

10+ 8V ′3)
(5− V ′22 − 3V ′23 )

EJT . (5.9)

The parameterdM may be calculated from the values of the coordinates of the minimaQ
(k)
j ,

with the result thatdM = 2β|V1|/µω2.



7130 Y M Liu et al

Figure 2. A comparison of the inversion splitting as a function ofK1/h̄ω with anisotropy
included (with V ′2 = −V ′3 = 0.01K1/h̄ω) (solid line) and the isotropic case for which
V ′2 = V ′3 = 0 (dashed line).

Figure 3 shows the variation ofδ with barrier height for three fixed values of the
JT energy. We see thatδ is reduced in magnitude drastically when the barrier heighthB
increases. The curves are only meaningful up to the maximum barrier heighthBmax possible
within the D5d minimum domain, which can be calculated using (5.9). Thus, in figure 3, we
have ended the curves athBmax = 0.4h̄ω for EJT = h̄ω, hBmax = 0.81h̄ω for EJT = 2h̄ω
andhBmax = 1.22h̄ω for EJT = 3h̄ω. WhenhB approaches zero, the values ofδ will again
tend to the rotational energy of the JT system rotating along a two-dimensional trough.

Figure 3. The inversion splitting as a function of the barrier heighthB for EJT = 3h̄ω (solid
line), 2h̄ω (long-dashed line) and ¯hω (short-dashed line). The separation between the minima is

dM =
√

8
5 |V1|/µω2.

Figure 4 shows a plot ofδ as a function ofEJT for fixed barrier heights. The curves
start at different points corresponding to the minimum allowed value of the JT energy for
that particular barrier height. This arises because if the barrier is not high enough or the JT
coupling is not so strong we have only hindered rotation along the two-dimensional trough.
It may be seen thatδ decreases smoothly whenEJT increases with very strong coupling.
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The criterion for tunnelling to occur is that ¯hωe1g should be less than the barrier height. In
order that this condition is satisfied, calculations show thatEJT > 5.5h̄ω for hB = 0.4h̄ω,
EJT > 3.2h̄ω for hB = 0.81h̄ω andEJT > 3.0h̄ω for hB = 1.22h̄ω. From these results,
we can determine those portions of the curves plotted in figure 4 which are contributions
from tunnelling.

Figure 4. The inversion splitting as a function ofEJT for hB = 1.22h̄ω (solid line), 0.81h̄ω
(long-dashed line) and 0.40h̄ω (short-dashed line). The separation between the minima is

dM =
√

8
5 |V1|/µω2.

6. Conclusion

The T1u⊗hg JT system has been modelled including anisotropy for the first time. The ranges
of values of the quadratic coupling constants for which minima of different types are formed
have been clearly identified (in contrast to the case in which the second-order coupling terms
are ignored, when there is a trough of minimum energy). New vibrational frequencies for
the lower-symmetry local modes at the anisotropic minima have been calculated using
the method ofÖpik and Pryce [12]. A scale transformation procedure was then applied
in order to incorporate the anisotropic frequencies automatically into the vibronic states
corresponding to the pentagonal minima. It was shown that the new results correctly
predict that the frequency of one of the e-modes tends to zero in the limit of linear coupling.
The inversion splittingδ due to the tunnelling between the D5d wells was calculated. As
anisotropy affects the overlaps between the vibrational states localized in different minima,
it has a dramatic effect on the magnitude ofδ.

The scale transformation method has not yet been applied to the trigonal wells on
account of difficulties introduced by virtue of the repeating IRs of the vibrational modes.
However, it is hoped that it will be possible to extend the method to the D3d wells in the
near future. Also, it was not possible to apply the scale transformation at the initial stage of
the problem (as was done in T⊗ t) in order to obtain expressions for the local frequencies
for all coupling strengths. This is because in this case it is necessary to include quadratic
coupling in order to generate wells, which in turn results in equations which cannot be
solved. However, strong-coupling results have been obtained for the D3d wells.
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Appendix. Details of the derivation of the S matrices for the scale transformation at
D5d minima

As the ground electronic states at the D5d minima transform as the irreducible representation
A2u of the point group D5d, the symmetry operations which do not change the ground
electronic states (apart from a possible change in its sign) must also belong to the D5d

group. In well A, for example, these symmetry rotations are

{E}, {CA5 , C̄A5 }, {CA,25 , C̄A,25 }, {CB̄D2 ,CF̄C2 ,CEF̄2 ,CBC2 ,CDE2 } (A.1)

whereĀ, B̄, C̄, etc denote the inverse states. As the ground electronic states at the D5d

minima correspond to corners of an icosahedron, the meanings of the above symmetry
operations can be illustrated as shown in figure A1. For example, CA

5 represents a symmetry
rotation by 2π/5 about theĀA axis in an anticlockwise direction. Those operations with a
bar over C are clockwise rotations. The matrix forms of these symmetry rotation operators
are reducible within the bases

|φ1〉 = |θ〉 |φ2〉 = |ε〉 |φ3〉 = |4〉 |φ4〉 = |5〉 |φ5〉 = |6〉. (A.2)

The reduction of these matrices into IRs of D5d is equivalent to finding new combinations

|ψνm〉 =
∑
i

Sνm,i |φi〉 (A.3)

Figure A1. Labelling of the electronic states at D5d minima and an illustration of the icosahedral
rotation operators.
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which transform as the IRs A1g, E1g and E2g of the D5d group. Thus the required combination
of coefficients satisfies the eigen-equations [16]∑

j

[
〈φi |

(
C

C(S)

)
|φj 〉 −

(
ν

m

)
δij

]
Sνm,j = 0. (A.4)

HereC andC(S) are the class operators of the group chain D5d ⊃ D2d. For example, at
well A we can choose the class operatorC = CA5 + C̄A5 belonging to D5d and the class
operatorC(S) = CEF2 belonging to D2d. Then theS matrix can be constructed from

S =
[
Sνm,1 Sνm,2 . . . . . .

Sν ′m′,1 Sν ′m′,2 . . . . . .

. . . . . . . . . . . .

]
. (A.5)

For the D5d minima, theS matrices for all six wells are given by

SA = 1√
10


−√3 −1

√
6 0 0

φ2 −√3φ−1
√

2 0 0
0 0 0 u φu

φ−2
√

3φ
√

2 0 0
0 0 0 −φu u

 (A.6)

SB = 1√
10


√

3 1
√

6 0 0
φ2 −√3φ−1 −√2 0 0
0 0 0 u −φu
φ−2

√
3φ −√2 0 0

0 0 0 φu u

 (A.7)

SC = 1√
10


√

3 −1 0
√

6 0
φ−2 −√3φ 0 −√2 0

0 0 φu 0 u

φ2
√

3φ−1 0 −√2 0
0 0 u 0 −φu

 (A.8)

SD = 1√
10


√

3 −1 0 −√6 0
φ−2 −√3φ 0

√
2 0

0 0 −φu 0 u

φ2
√

3φ−1 0
√

2 0
0 0 u 0 φu

 (A.9)

SE = 1√
10


0 2 0 0

√
6√

5
√

3 0 0 −√2
0 0 u φu 0√
5 −√3 0 0

√
2

0 0 −φu u 0

 (A.10)

SF = 1√
10


0 2 0 0 −√6√
5
√

3 0 0
√

2
0 0 u −φu 0√
5 −√3 0 0 −√2

0 0 φu u 0

 (A.11)

where

u =
√

10

φ + 2
.



7134 Y M Liu et al

References

[1] Khlopin V P, Polinger V Z and Bersuker I B 1978 Theor. Chim. Acta48 87–101
[2] Pooler D R 1980J. Phys. C: Solid State Phys.13 1029–42
[3] Auerbach A, Manini N and Tosatti E 1994Phys. Rev.B 49 12 998–13 007
[4] O’Brien M C M 1996Phys. Rev.B 53 377–89
[5] Ceulemans A and Vanquickenborne L G 1989Struct. Bonding71 125–59
[6] Dunn J L and Bates C A 1995Phys. Rev.B 52 5996–6005
[7] Wang C-L, Wang W-Z, Liu Y-L, Su Z-B and Yu L 1995Phys. Rev.B 50 5676–9
[8] Liu Y M, Polinger V Z, Bates C A and Dunn J L 1996J. Phys.: Condens. Matter8 L523–9
[9] Ham F S 1965Phys. Rev.A 138 1727–40

Ham F S 1968Phys. Rev.A 166 307–21
[10] Bates C A and Dunn J L 1989J. Phys.: Condens. Matter1 2605–16
[11] Dunn J L and Bates C A 1989J. Phys.: Condens. Matter1 2617–29
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